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Abstract 

 
 
     The management of weather-related risks is one of the main concerns of the 

farmers: the development of tools helping their risk covering of unfavourable climate 

seasons seems essential. This article is mainly focused on a financial contracts 

family: weather derivatives. The study tackles more specifically the wine-producing 

industry. The kind of weather-related risks the viticulturists are exposed to is first 

analyzed. The offer of weather derivatives which can be proposed by the market is 

also studied. A kind of product which can at the same time have a sufficient liquidity, 

and answer to the viticulturists needs, is inferred. In order to propose a pricing of 

these products, a simulation of the temperatures is realized. Determinist parameters 

of this simulation are estimated using an iterative method. Stochastic part is based 

on an autoregressive model with seasonal volatility, which parameters are estimated 

by the generalized least squares fitting method and which residual noise has been 

simulated by a numerical estimation of his inverse repartition function. The results of 

the study are presented for the products based on temperatures of Paris and 

Bordeaux.  

 

Introduction 

 

     The agricultural sector is confronted as all economical sectors to numerous risks, 

but it presents the particularity to be very exposed to weather-related risks. Farms 

can be affected in a very short time by significant losses of harvest and can be faced 

with a critical financial situation. Because of this, the management of weather-related 

risks is one of the main concerns of the farmers: the development of tools helping 

their risk covering of unfavorable climate seasons seems essential. During the last 

decades, numerous agricultural insurance programs have been tested and 

developed in several countries. Nevertheless, their range of application is limited to 

risks presenting at least some insurability characteristics. Moreover, considering 

obtained results of their implementing, some authors are questioning their efficiency, 

and suggest reviewing the range and the use of such programs (J.Skees, 2001; 



S.Makko, 2002). In this context, new complementary tools should be developed. This 

article is mainly focused on a financial contracts family: weather derivatives. The 

study tackles more specifically the wine-producing industry, for which a future market 

has already been created in France (Winefex).  

 

     The kind of weather-related risks the viticulturists are exposed to is first analyzed. 

The offer of weather derivatives which can be proposed by the market is also 

studied. A kind of products which can at the same time have a sufficient liquidity, and 

answer to the viticulturists needs, is inferred. In order to propose a pricing of these 

products, a simulation of temperatures is realized. Determinist parameters of this 

simulation are estimated using an iterative method. Stochastic part is based on an 

autoregressive model with seasonal volatility, which parameters are estimated by the 

generalized least squares fitting method and which residual noise has been 

simulated by a numerical estimation of his inverse repartition function. The results of 

the study are presented for the products based on temperatures of Paris and 

Bordeaux.     

II..  WWEEAATTHHEERR--RREELLAATTEEDD  RRIISSKK  IIMMPPOORRTTAANNCCEE  FFOORR  VVIITTIICCUULLTTUURRIISSTTSS  

Wine industry is facing many risks, regarding mostly quality and yield. Both 

characteristics remain largely defined by weather conditions.  

II..11..  WWeeaatthheerr--rreellaatteedd  rriisskk  aanndd  ccrroopp  qquuaalliittyy  

Objective criteria generally used to estimate crop quality are sugar, polyphenols 

content and acidity, mostly determined by photosynthesis phenomenon. 

Photosynthesis phenomenon depends on three weather characteristics: temperature, 

sunshine and pluviometry.  

Temperature is considered in France as the main limiting factor of 

photosynthesis. This factor influences crop quality mainly during grape maturation 

phase. Between 18°C and 33°C (64,4°F - 91,4°F), photosynthesis efficiency reaches 

90 to 100% (Kliewer, 1970), optimum being achieved circus 25°C (77,00°F) 

(Alleweldt & Ruehl, 1993). This efficiency heavily decreases beyond these 

temperature limits. Therefore, two types of temperature conditions that may be 

prejudicial to crop quality should be considered: too low temperatures during the 

whole maturation period, that could result in insufficiently sugared or too acid grapes; 

too high temperatures, that could generate insufficiently acid crops, and that may 

force viticulturists to bring forward harvest, and to realize it when temperature are still 



high, which can be harmful to vinification process, specially for white wine. Specific 

vinification processes can correct some crop parameters: their impact on weather-

related risk valuation will not be taken into account in this study.  

Sunshine is also playing a significant role on crop quality, as it is one of the main 

factors of photosynthesis. The longer the sunshine during the vegetative period of 

grapevine, the more sugared and the less acid grapes will be. From this point of 

view, grapevine demands relatively luminous weather. Risk for crop quality is to 

receive insufficient sunshine, especially during maturation period. As sunshine is 

correlated with temperature, and its importance is less crucial than temperature 

under our latitudes, it won’t be considered as a specific weather-related risk factor in 

this study. 

Pluviometry has also its importance in grape quality: sugar-acidity-polyphenols 

relation is under dependence of considered terroir hydric regime. Best equilibrium is 

reached when grapevine is subjected to a rather humid weather (without any excess) 

till veraison (beginning in general at the end of July), to allow an optimal growth of the 

grapevine, and to a rather dry regime (without any excess) during maturation stage, 

to allow an optimal sugar accumulation in the berries, till the harvest generally 

conducted in September or October. In France, this factor presents a less important 

impact than temperature on grape quality; it mostly impacts yield.   

II..22..  WWeeaatthheerr--rreellaatteedd  rriisskk  aanndd  yyiieelldd  

As for crop quality, weather conditions have a strong impact on yield. In this 

study, regulatory limits (defined for instance for French AOC, that have to comply 

with INAO decision), or voluntary limitations of yield will not be taken into account, as 

the goal of this study is exclusively weather-related risk. 

Temperature has a direct effect on grapevine development and on yield. During 

winter, grapevine can cope with very low temperatures. From the end of flowering 

stage to the maturation period, temperature must reach a sufficient level (between 

18°C to 25°C (64,40°F to 77,00°F)). Two main risks than can affect yield can be 

identified: frost and very high temperatures during a long period. Very strong frosts 

(below 5,00°F) can lead to partial or total destruction of stocks and roots; spring 

frosts can cause important damages after bud break. This risk will not be taken into 

account for two reasons: it can be limited by the use of agricultural processes1 and 

can be insured. Finally, very high temperatures during an extended period can also 

                                                 
1 In areas particularly subject to frost, viticulturists have adapted grapevine work through specific 

techniques (artificial smoke clouds limiting temperature fall, late pruning…).  



generate a lesser yield by leading to a “roasting” phenomenon and the drying out of 

the future crop.  

Pluviometry also impacts yield. Rainfall levels from 400 to 600 millimeters per 

year represent ideal conditions for grapevine development. During winter, rains have 

no direct influence on the vineyard but allow the accumulation of water stocks that 

will be useful during spring and summer. At spring, rains are of great importance as 

grapevine growth depends on them. During summer, too high rainfall levels can lead 

to mildew development and threaten the crop. On the other hand, if hydric stock is 

insufficient, summer drought is also harmful to yield. These two risks are largely 

correlated with temperature risks mentioned further up (a rainy summer is generally 

cool, and a major drought is often accompanied by high temperatures). Researches 

in this paper are therefore limited to temperature risk study. 

Fall rains happening before harvest may generate a development of grey mold and 

berry bursting. They can also hinder the harvest. Risks related to spring and fall rains 

are not being tackled in this paper. They may represent a valuable research path.  

Finally, hail risk can destroy in a few minutes a whole crop. As it can be insured, this 

risk will not be taken into account.  

II..33..  MMaaiinn  rriisskkss  ttoo  bbee  ccoovveerreedd  bbyy  wweeaatthheerr  ddeerriivvaattiivveess  

Two kinds of climatic risks could therefore be covered by weather derivatives: 

insufficient mean temperatures from the end of the flowering stage to the harvest and 

too high temperatures during maturation stage. 

IIII..  FFOORREESSEEEEAABBLLEE  WWEEAATTHHEERR  DDEERRIIVVAATTIIVVEESS  OOFFFFEERR  IINN  TTHHEE  MMEEDDIIUUMM  TTEERRMM  

Weather derivatives are rather illiquid products, today available on the Chicago 

Mercantile Exchange, and dealt as OTC products in France. Energy companies 

dominate this market. Two factors explain this domination: 

− A volume effect: weather-related risk is massive due to heating and cooling 

energy sales (dozens of Euros billions in France in 20032), that are extremely 

correlated to temperature.  

− Their balanced cover needs, favoring market liquidity: two energy companies 

may seek an opposite position at the same time. Indeed, high summer 
                                                 
2 Household domestic energetic consumption reached Euros 35 billions in 2003 (« l’énergie en 

France – Repères » observatoire de l’énergie – MINEFI – édition 2004), and this consumption is for 

the most part linked to heating. Industrial and service energy consumption for heating purpose should 

also be added.  



temperatures represent a risk for a company short in energy: these temperatures 

raise demand (higher air-conditioner consumption) and reduce some power 

plants capacities. On the other hand, they represent an opportunity for a “long” 

company (higher prices). Conversely, high winter temperatures represent an 

opportunity for a company short in energy and a risk for a “long” company: they 

reduce demand (lower heating related consumption) and therefore prices. A 

“short” energy company is to sell the weather derivative a “long” company is 

trying to buy. 

 

Viticulturists, even if they decide to massively turn to weather derivatives, are to 

remain less important players in this market: 

− Concerned volume is less important (11 Euros billions for the whole field in 

France)3. 

− All viticulturists have to cover the same kind of risk, which would result in a 

completely illiquid viticulture-specific market. Indeed, viticulturists are to look for 

covers against too low mean temperatures during vegetative period cover or 

overly high temperature, specifically before harvest… Some nuances may exist, 

depending on vineyards characteristics, but they are to be traduced by different 

strike prices rather than by bullish or bearish positions regarding the same 

product.  

Therefore, the following hypothesis is retained: viticulturists could not benefit from a 

specific weather derivatives offer but will have to cover their needs having recourse 

to the weather derivatives commonly traded on the energy market. These weather 

derivatives have the following characteristics:  

 A mean daily temperature, computed from data gathered in one or several 

meteorological stations. These means can be computed from minimal and 

maximal temperature on a 24 hours period, or from several temperatures 

measured at regular intervals during 24 hours (the latter better corresponding 

to energy companies needs). 

 Degree days, computed as follows: 

- During summer : Max (mean daily temperature – 18°C (~65°F) ; 0) 

- During winter : - Min (mean daily temperature – 18°C  (~65°F); 0) 

 A period during which derivative is applied. 

 A strike, given in number of degree days on the period. 

 A tick, given in € per degree days, that allows the calculation of the pay-off. 
                                                 
3 AFP dispatch – December 7th 2004 



 A pay-off, computed as follows: cumulated number of degree days above or 

below strike during the concerned period multiplied by tick. 

 A premium, fixed amount paid in advance by the derivative buyer.  

IIIIII..  SSTTUUDDIIEEDD  WWEEAATTHHEERR  DDEERRIIVVAATTIIVVEESS  

In the previous chapter, it has been set that the weather derivatives structure to be 

studied should be inferred from energy products. Weather derivatives parameters 

described above are therefore to be fixed to answer viticulturists needs.  

IIIIII..11..  AApppplliiccaattiioonn  ppeerriioodd  

In chapter 1, two major risks to be covered by viticulturists have been selected. 

These risks define an application period for related weather derivatives:  

- Too cold temperatures from the end of flowering stage to the end of the 

maturation, corresponding to an application period from the 1st of July to 

the 30th of September.  

- Too high temperatures before the harvest, corresponding to an 

application period from the 1st of August to the 15th of September4.  

These periods may be adapted to answer specific needs, such as vineyard at 

altitude, or to adapt these derivatives for areas outside France. 

IIIIII..22..  CChhooiiccee  aanndd  ccaallccuulluuss  ooff  tthhee  uunnddeerrllyyiinngg  rriisskk  mmooddeell  

Application periods correspond to energy companies summer period. Underlying 

is therefore modeling using Cooling Degree Days, and is computed as: 

)0;18( CetemperaturdailymeanMax
periodnApplicatio

°−∑       (18°C ~ 65°C) 

Meteorological stations must be defined. Paris Montsouris and Bordeaux 

Mérignac have been chosen on the basis of following criteria: 

- Paris Montsouris is the station the most likely to be chosen for the most liquid 

weather derivatives, therefore the most available for viticulturists. Indeed, 

liquidity is brought mainly by energy companies (cf. chapter II), and this 

station is representative of the most populated French area, and the one that 

use most energy. If the most liquid derivatives in France were to be based on 

a compound index made up from several different meteorological stations, 

weighting would be made notably from demographic criteria (corresponding to 

                                                 
4 High temperatures favour an early harvest. 



the number of final clients), or from weather sensitive energy consumption. In 

both cases, Parisian area is to have the strongest weighting. 

- Bordeaux Mérignac is a station representative of a major wine producing 

area, with a climate significantly different from Parisian area.  

IIIIII..33..  SSttrriikkee  cchhooiiccee  

Strike should have to be determined locally: depending whether the vineyard 

faces south, on wine production methods, on grape variety, each viticulturist will have 

to choose threshold beyond or over which yield or harvest quality is threatened. In 

fact, an expert will have to compute for each vineyard a threshold corresponding to a 

probability: for instance, the threshold corresponding to the coolest year in five years.  

Pricing study is therefore done choosing several strike levels.  

IIIIII..44..  TTiicckk  vvaalluuee  

Tick value has no direct impact on the method of calculation of weather 

derivatives (the higher the tick, the more selective this kind of product is for small 

concerns).  

IIVV..  PPRRIICCIINNGG  OOFF  TTHHEE  WWEEAATTHHEERR  DDEERRIIVVAATTIIVVEESS  SSTTUUDDIIEEDD  

Weather derivatives pricing has generated numerous papers. This pricing 

requires first to model temperature, then, from temperatures series, to model weather 

derivatives payoff, and finally, to infer corresponding premium.  

IIVV..11..  TTeemmppeerraattuurree  mmooddeelliinngg  

IIVV..11..11..  GGeenneerriicc  cchhaarraacctteerriissttiiccss  ooff  tteemmppeerraattuurree  

From an intuitive comprehension of temperature, some characteristics are 

obvious: 

 temperature is a seasonal phenomenon, 

 temperature presents a several days correlation, 

 temperature is stationary as a first approximation level.  

These characteristics are the basis of all published temperature models, which can 

be brought together in two major types: 

- mean-reversion models, 

- autoregressive models.  



IIVV..11..22..  TTwwoo  ttyyppeess  ooff  mmooddeellss  pprreesseennttaattiioonn  

IIVV..11..22..11..  MMeeaann--rreevveerrssiioonn  mmooddeellss  

Alaton, Djehiche and Stillberger (2001) propose this kind of model, based on an initial 

model from Dischel (2000). 

The model is a mean-reversion model, defined by:  

( ) tttt
t

t dWdtT
dt
ddT σθαθ

+





 −+=    with: 

θt = Trendt + Seast, the historical mean temperature for date t, 

α, mean-reverting parameter,  

σt, volatility, 

Wt, a standard brownian movement. 

Temperature at a date t is therefore given by: 

( ) ∫ −−− ++−=
t

uu
ut

t
t

t dWeeTT
0

)(
00 σθθ αα  

Barrieu (2002) has shown this model is not fully adapted to weather derivatives 

modeling:  

- Model is extremely sensible to � parameter calculation. This heavily limits its 

reliability. 

- Temperature time-series simulation through this kind of modeling produces 

results far from other considered modeling and above all far from historical 

trend.  

IIVV..11..22..22..  AAuuttoorreeggrreessssiivvee  mmooddeellss  

These models are defined by: 

Tt = Trendt + Seast + Corrt + Rt    with: 
 

Trendt, trend part of temperature, modeled as an time affine function with jumps, 

estimated on several years,  

Seast, seasonal part of temperature, 

Corrt,  an AR(n) type process modeling correlation, 

Rt, model residual. 

These models produce better results than mean-reverting ones. They are further 

studied in this article. 



IIVV..11..33..  TTeemmppeerraattuurree  mmooddeelliinngg    

IIVV..11..33..11..  DDeetteerrmmiinniisstt  ppaarrtt  eessttiimmaattiioonn  

A first study of series over 80 years (partially incomplete for Bordeaux Mérignac) 

highlights the nearly stationary characteristics of the series.  

Daily temperature - Bordeaux Mérignac 1920-2003
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Though, five years moving average study shows a slight increase in mean yearly 

temperature. 

Daily temperature - Paris Montsouris 1917-2003
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- Trend growth modeling 
 



 
 

 
 

An acceleration of this growth seems to occur in 1985-1988. Barrieu (2002) observes 

the same trend rupture in 1985 for Paris Montsouris series. A first factor is to be 

taken into account: a rise of mean yearly temperatures. As suggested in other 

published papers (Barrieu, 2002) the modeling of this rise is defined by an affine 

function with a jump: 
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Breakpoint and �1 and �2 parameters will be computed globally with all other 

determinist parameters (cf. infra). 

 

- Seasonality modeling 
Another factor to be taken into account in determinist modeling is seasonality. 

Seasonality can be clearly seen on 30 days minimum and maximum of daily 

temperatures. 

 

 



 

 
To estimate this seasonality, “February 29th” are removed from the series to show 

yearly periodicity (Barrieu 2002; Diebold 2004). 

Periodogram is computed using the following: 
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with : 

n, tested temperature function periodicity, 

N, Sample size of data series (in this case 10950, corresponding to 30 years of daily 

data), 

Tk, kth sample temperature. 

 

Following results are obtained: 

 



 
Two spikes are clearly observed for n=30 (3,88 for Paris Montsouris, 3,64 for 

Bordeaux Mérignac), corresponding to a yearly  frequency, and for n = 60 (0,38 for 

Paris Montsouris, 0,47 for Bordeaux Mérignac) corresponding to a half-yearly 

frequency. Every other periodogram values are inferior or equal to 0,2.  

 

Seasonal component is therefore modeled with a sum of yearly and half yearly 

sinusoids: 

 

Seast= a1 cos(2�t/365)+ b1 sin(2�t /365) + a2 cos(4�t /365) + b2 sin(4�t /365) 

 

- Trend and seasonal parameters estimation: 
Following trend and seasonality parameters are computed: �1, �1, �2, �2, tbreakpoint, 

a1, b1, a2, b2. Proposed method to estimate these parameters is the following one:  

 The series is first corrected from seasonal effects (computing of seasonal 

parameters a1, b1, a2, b2); 

 Trend parameters �1, �1, �2, �2, tbreakpoint are estimated from the series 

corrected from seasonal effects; 

 Seasonal parameters a1, b1, a2, b2 are re-estimated once seasonal effects 

removed. 

This iterative methodology is designed to correct potential bias caused by border 

effects, that cannot be completely neglected as the period studied is only a few 

decades.  

1st stage : initial correction of seasonal effect 
Following expression is minimized function of a1, b1, a2, b2, using a Newton algorithm:  

∑
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Following values are obtained: 

 



 Paris Montsouris Bordeaux Mérignac

a1 -7,347 -6,780 

b1 -2,470 -2,648 

a2 -0,021 -0,121 

b2 0,759 0,932 

 

2nd stage : Trend calculation 

An empirical criterion is proposed to identify the breakpoint optimizing trend and time 

series adequacy. This criterion consists in minimizing the following function of �1, �1, 

�2, �2 using a Newton algorithm for every tbreakpoint ∈ [1977/01/01; 2000/12/31]:  

( ) ( )∑∑
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22
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For Paris: 

 
For Bordeaux: 

  

 
Minimum is reached for Paris and for Bordeaux on the 1st of August 1987.  

Choice of the breakpoint has a limited impact on adequacy between trend and 

observed temperature: deviation remains important (about 3°C ~ 38°F), and varies 

very slightly whatever the breakpoint chosen. This deviation remains too important to 



allow Chow test, for instance, to be conclusive on the validity of the breakpoint 

identified above.  

The choice of this breakpoint has on the other hand a strong incidence on the 

resulting trend: if for instance trend had been estimated on the last ten years series, it 

would have been null, thus creating a deviation of 0,2°C (~ 32°F) in 2003.  

 

Obtained results are the following: 

 

 Paris Montsouris Bordeaux Mérignac 

Trend 01/1974 – 07/1987 -0,047°C/an -0,011°C/year 

Trend 08/1987 – 12/2003 +0,027°C/an +0,040°C/year 

Jump of the trend on August 1st 1987 +1,071°C +1,094°C 

 

These results highlight 1987 jump importance. 

They also highlight linear modeling limits: slightly negative values observed on 74-87 

period are negative, contrary to what could be observed on longer periods. Additional 

inquiry may be to use the results of physical modeling of the climate to precise this 

econometric approach oh the trend. 

 

3rd stage : 2nd iteration of seasonal effects correction 
a1, b1, a2, b2  parameters are computed from Tt - Trendt, rather than from raw 

temperatures, to gain more precision in the estimation. 

Tt - Trendt periodograms on the whole 1974-2003 period are more obvious than 

before: yearly and half-yearly spikes are better standing out. 



Periodogram of Tt - Trendt (29th of February removed)
Paris Montsouris 1974 - 2003
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Following results are obtained : 

 

 Paris Montsouris Bordeaux Mérignac 

 After iteration Before iteration After itération Before iteration

a1 -7,352 (-0,08%) -7,347 -6,785 (-0,08%) -6,780 

b1 -2,451 (+0,79%) -2,470 -2,620 (+1,04%) -2,648 

a2 -0,016 (+30,5%) -0,021 -0,116 (+4,42%) -0,121 

b2 0,761 (+0,25%) 0,759  0,937 (+0,60%) 0,932 

    

IIVV..11..33..22..  SSttoocchhaassttiicc  ppaarrtt  eessttiimmaattiioonn  

To model stochastic part, data autocorrelogram should be studied first. 



- Data autocorrelogram 

Paris                                    Bordeaux 

 

   

Autocorrelograms show significant partial autocorrelations at the order 3 (every 

partial autocorrelation at a superior order are inferior or equal to significativity 

threshold, equal to 019,0/2 =sizeSample ). The AR3 model that has been 

developed in numerous papers (Cao & Wei, 2000; Tankov 2001; Roustant 2001; 

Barrieu 2002) is therefore retained. Its parameters are named �1, �2, �3. 

 

- Residual Rt modeling 

( )∑
=

−−− −−−
N

k
tttt RRRR

4

2
332211 φφφ  minimum is computed (ordinary least squares 

fitting method) to estimate �1, �2, �3.  

 

 

Following results have been obtained: 

 

 Paris Montsouris Bordeaux Mérignac

�1 0,923 0,838 



�2   -0,210 -0,139 

�3 0,072 0,054 

 

- �t residual of the AR(3) 

 Diebold (2004) has suggested that residual seasonality is most often seasonal. To 

identify the seasonal component, residuals are modeled as follows: 

�t = �t�t where σt is AR residual volatility, supposed strictly positive, non constant in 

time. 

Squaring this expression, then raising it to logarithm, the following result is obtained: 

ln(�t²)=2.ln(�t)+ln(�t²) 

ln(�t²) is supposed not seasonal. ln(�t²) periodogram is therefore computed.  

 

For Paris Montsouris: 

 

For Bordeaux Mérignac : 

 

A yearly and half-yearly periodicity for �t can be inferred.  

�t is modeled by �0 + a cos(2�t/365)+ b sin(2�t/365)+ c cos(4�t/365)+ d 

sin(4�t/365).  

Modeling parameters are estimated minimizing �ln(�t²)2
 which is likelihood logarithm. 

Following results are obtained: 

  



 Paris Montsouris Bordeaux Mérignac

�0  1,058 1,117 

a  0,031 0,152 

b 0,075 0,019 

c 0,066 0,084 

d -0,037 -0,047 

 

AR3 parameters are then computed again to minimize �t 

 

 Paris Montsouris Bordeaux Mérignac 

 After iteration Before iteration After itération Before itération 

�1 0,919 (-0,4%) 0,923 0,838 (+0,03%) 0,838 

�2 -0,208 (+1,0%) -0,210 -0,145 (-4,3%) -0,139 

�3 0,072 (+0,3%) 0,072 0,057 (+4,7%) 0,054 

 

The resulting noise presents satisfactory characteristics: 

- it doesn’t present significant autocorrelation, 

- it doesn’t present significant seasonality, 

- it seems stationary, 

- its 3rd and 4th order moments are close from being Gaussian, even though 

Jarque Bera test doesn’t conclude this kind of modeling should be 

considered. 

This noise will therefore be generated numerically, using its inverse repartition 

function. 

 



IIVV..11..33..33..  TTeemmppeerraattuurree  mmooddeelliinngg  ccoonncclluussiioonn  

Temperature has been modeled on 1988-2003 period as presented below:  

Tt = Trendt + Seast + Rt with 

Trendt = �2 + �2t 

Seast = a1 cos(2�t/365)+ b1 sin(2�t /365) + a2 cos(4�t /365) + b2 sin(4�t 

/365) 

Rt = �1 Rt-1 + �2 Rt-2 + �3 Rt-3 + �t�t with 

�t ��0 + a cos(2�t/365)+ b sin(2�t/365)+ c cos(4�t/365)+ d 

sin(4�t/365) 

 �t  a noise numerically generated from its inverse repartition function. 

 

IIVV..22..  PPaayy--ooffff  eessttiimmaattiioonn  ooff  wweeaatthheerr  ddeerriivvaattiivveess  ccoonnssiiddeerreedd        

Following notations are proposed: weather derivatives corresponding to 1er of 

July to 30 September will be called “long” products, and weather derivatives 

corresponding to 1er of August to 15 August will be called “short” products. 

Corresponding premium P can be simply computed using following expression:  

P = E[pay-off] + ��[pay-off], with � the seller risk aversion parameter. 

 

A viticulturist that wishes to use weather derivatives would express his need as: « I 

wish a pay-off superior or equal to X for a risk level that occurs 20% or 30% of years 

(what he would consider as “bad seasons” from a climatic point of view), and to pay 

the smallest premium ».  

Following notations are proposed (taking the case of a pay-off fixed for 30% of 

years):  

− CDD Cooling Degree Days,  

− U the “underlying” (corresponding to Cooling Degree Days sum on the 

period, in °C.days),  

− U30% the underlying level verifying Prob(U<U30%)=30%,   

− Usup the strike for the “long”  product,  

− t the tick,  

Viticulturist request (for the “long” product) corresponds to the search for Usup 

minimizing premium under the constraint of a pay-off at U30% equal to X, which 

means to search for Usup minimizing (E[max(Usup-U ; 0)]+��[max(Usup-U ;0)]).t under 

the constraint  

(Usup-U30%).t = X. 



Answer viticulturist request would therefore consist in determining: 

Usup minimizing [ ] [ ]
%30sup

supsup )0;max(.)0;max(
UU

UUUUE
−

−+− σλ  

 

To determine Usup of the product corresponding to viticulturist request, it is therefore 

necessary to identify U30% with a sufficient precision.  

To do so, 1000 yearly temperature series are computed for Paris and Bordeaux 

using the above temperature model. For each of these series, underlying U is 

computed. Underlying U distribution can be numerically estimated from these series, 

and is represented below for each of considered products. Weather derivatives pay-

off described in chapter II can be inferred fixing strike and tick t. Corresponding 

premiums could also be computed fixing risk aversion parameter �. 

 

Underlying distribution of "short" product - Bordeaux
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Underlying distribution of "short" product - Paris
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Underlying distribution of "long" product - Bordeaux
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Underlying distribution of "long" product - Paris
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So, for Bordeaux “long” product, U30% = 355°C/days and U40% = 367°C/days. This 

highlights the accuracy need for temperature modeling to correctly price these 

products: between those two values, deviation is only 12°C/days for a 3 months 

period. Mean daily temperature bias must therefore be inferior to 0,375°C (~ 0,675°F) 

to offer a risk cover precise by ± 10 %. 

This is on the same scale as non stationarity identified in chapter IV.1.3.1. To price 

with a precision better than ± 10 %, it seems necessary to refine trend modeling.  

These graphs highlight also significant differences between Paris and Bordeaux:  

- The abscissas are shifted, which reflects the gap between those two cities gap. 

- Underlying distribution of the “long” product is strongly asymmetrical, due to the 

18°C threshold, reached much more often in Paris than in Bordeaux in July and 

in September.  

 



Temperature series also allow the computing of expected value and standard 

deviation of the pay-off, function of the strike, and therefore, of the premium.  

Pay-off expected value and standard deviation of "long" product function of the strike 
(Bordeaux)
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Pay-off expected value and standard deviation of "long" product function of the strike 
(Paris)
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This highlights several major differences between Bordeaux and Paris: 

- Curbs are shifted by the mean temperature gap between those two towns 

(graphs scales have also been shifted to simplify comparison); 

- Standard deviation is higher for Bordeaux, which can rise the cost of these 

products, particularly if risk aversion parameters are high; 

- Differences on “long” product due to higher impact of the threshold of 18°C on 

Paris CDD are found again: pay-off expected value is truncated for the first 

values of the strike. 

Even before the study of the correlation between Paris and Bordeaux 

temperatures, these differences are important enough to conclude that two 

identical products, one based on Paris temperatures and the other on Bordeaux 

temperatures, would present a significant price gap. 

 

 

 

 

 

 



VV..  DDIISSCCUUSSSSIIOONN  AANNDD  IIMMPPLLIICCAATTIIOONN  

Given the technical issues concerning the pricing of weather derivatives, it cannot be 

proposed as such to viticulturists. Two ways of implementation can be foreseen : 

- To turn to brokers to market these products. Indeed, they can deliver some of the 

necessary communication and formation to viticulturists. On the other hand, they 

will generate additional transaction costs. 

- These products can be used by insurance companies as an alternative solution 

to reinsurance. These products allow the transfer of some of the price and the 

volume risks to a more liquid energy market. They are therefore useful products 

for companies proposing crop and revenue insurance.   

 

To validate this approach, a study should be lead with viticulturists to confirm the 

choice of the weather risks covered. Two comparaisons should also be lead : 

- between the pay-off and viticulturists revenue,  

- between the pay-off and crop and revenue insurance indemnisation. 

 A complete pricing, including management costs, should then be defined for specific 

areas. A first business model of the product could then be realised, and confronted to 

a panel of viticulturists and of insurance companies.  



  

 

On the basis of a study on the weather-related risks viticulturists have to face, 

suitable products for the management of these risks have been proposed. 

Temperatures of Paris and Bordeaux have been carefully modeled so as to propose 

a method allowing the set up of a pricing. Compared to the latest published papers, 

gains of precision were sought by developing several elements. Determinist part has 

been refined proposing an empirical criterion to identify the trend breakpoint, and to 

estimate seasonal and trend parameters through two iterations. Stochastic 

parameters were estimated using generalized least squares fitting method, which has 

brought an increase of autoregressive model accuracy. Finally, instead of estimating 

residual noise using a Gaussian or hyperbolic distribution, a numerical estimation 

based on the inverse repartition function. 

 From this study, several research paths can be foreseen. 

First, climate modelisation can be further improved. Concerning determinist 

modeling, climate physical modeling results may be used, particularly to define the 

trend. Besides, this paper is not tackling the issue of correlation between temperature 

risks measured at Bordeaux Merignac meteorological station, and risks actually 

concerning such or such vineyard in the area. To better estimate derivative products 

adaptation, this hypothesis could be studied comparing Bordeaux temperatures 

series, and temperatures series measured directly on vineyards. This kind of 

research can be lead using mini-meteorological station on field that allow experts to 

infer relationships between the two temperature series.  

Another research path would be to correlate several cities temperatures to confirm 

the necessity of designing local products. 

The study of pluviometry-related risks, and their correlation with temperature risks, 

could be a major supplement to this paper. 

Secondly, to better evaluate the attractivness of the product, correlation between 

climate and either viticulturists revenues or insurance indemnisation can be further 

modelised. 

Finally, a behavioral study could complete the understanding of how viticulturists 

would use this kind of products. 
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